PERFORMANCE OF STEEL SALT STORAGE FACILITIES

NEW YORK STATE COUNTY HIGHWAY SUPERINTENDENTS ASSOCIATION – WINTER CONFERENCE JANUARY 2017

Three things we know about salt...

Great on fries!

Deicing agent of choice for most transportation agencies

Doesn't mix well with steel!

Presentation will cover the following:

- Inspections and common problems found
- Retrofits
- Replacements
- Required analysis
- Learning assessment

- Impact damage from equipment
- Any member can be in tension or compression depending on loading.
- Beware of buckling in compression members and tensile rupture in tension members.

Connections

- Complex details
- Accelerated corrosion when covered with salt
- Keep the salt away from the steel components!

Cables

- Porous
- Gaps between strands can collect salt and moisture which leads to corrosion
- Subject to sudden failure

Cable Connections

- Many Components
 - Turnbuckles
 - Wire rope, turn buckle
- Trap salt and moisture
- Subject to severe corrosio

Quality Control on Welds

Wall Issues

- Prefabricated foundations
- Look for spalling, cracking, and separation
- Check for proper backfill on the outside of the wall

Salt overloading

- Too much salt can pour over the top of the retaining wall
- Can lead to corrosion or fabric failure
- Note that the fabric is an integral part of the structure – provides bracing to the top chord

Corrosion Overall

- Connections
 - Welds/cables are tough to inspect once initially affected
 - Bolts and ratchet straps (used to tension fabric) may need replacement

REPAIRS AND REPLACEMENT

REPAIR OR REPLACE?

Why Repair?

- Address design inadequacies
- Moderate corrosion
- No major manufacturing flaws
- Would need new foundation
- Lower Cost (\$10-\$100k), depending on condition

REPAIR OR REPLACE?

Why Replace?

- Acquire larger/different structure
- Heavy corrosion
- Suspect manufacturing (i.e. welds)
- Fabric needs replaced
 - \$45-\$75k alone
- Higher Cost (\$250k-\$500k)

REPLACEMENT STRUCTURES

Keep Foundation

Complete Change

System Overview

Portal Frame

- Pre-fabricated weldments selected
- Bolted together

Longitudinal System

Fabric

- Braces members
- Tensioning effect
- Dictates load direction

Wind Load

- Design wind speeds vary locally
 - Special wind region
 - Exposure category
- Enclosed/Partially enclosed
- Many load cases
 - Torsional
 - Uplift/downforce

0.75P WX

PWY

PLY

0.75P WY

0.75PLY

Snow Load

- Design snow loads vary locally
- Non-heated structure

- Slippery surface
- Snow creates additional fabric tension
- Balanced and unbalanced loading

Dead Load

- Light if fabric, heavy if wood
- Is being light good or bad?
 - Seismic
 - Snow
 - Wind
 - Foundation

Analysis Results

- Tube-to-tube connections/weld often fail
- Gross member overstress
- What happens when the analysis considers the effect of corrosion?

REPAIRS AND RETROFITS

Repair Example 1

Repair Example 2

REPLACEMENT STRUCTURES

- Foundation concerns
 - Capacity of existing wall
 - Undermining of existing structures
 - Soil bearing capacity

- Foundation
 - Concrete failures
 - Review design and construction

- Connections
 - Difficult to tell degree of corrosion on cables once initially affected

- Connections
 - Welds may be inadequately designed, improperly placed, or failed

- Connections
 - Bolts and ratchet strap brackets may need replacement, or must be considered to be less effective especially over time

- Different areas of members are more/less perceptible to corrosion
 - Environmental factors
 - Quality of construction

Hot Dip Galvanization

- Member must fit in galvanization tanks
- High bond strength
 - Durability
- Superior Protection
 - Barrier protection
 - Cathodic protection
 - Zinc forms patina
- Provides coating on inside of HSS
 - Important if pipe ends are not closed

Cold Galvanization (Zinc-Rich Paints)

- Greater versatility
 - Can accommodate all member lengths
- Inferior Protection
 - Barrier protection
 - No cathodic protection due to bonding agents
 - Protective patina does not form
- Applied in-field
 - Applied over welds
 - Can be used to touch-up holes, cut ends, etc.

Active Cathodic Protection

- Uses sacrificial anode to electronically supply electrons as they are lost to the environment
- Only protects steel if it is:
 - Submerged or filled with water
 - Buried in the ground
 - Encased in concrete

Electronic Rust Prevention System

- Interferes with chemical bond between iron and oxygen
- Operates on a "closed loop" electrical circuit
- Can be used in open air
- Popular on vehicles
 - Building is a larger-than-typical application

Prevent Overloading of Salt

Which of the following is not a critical elements of a fabric structure?

- a) Portal Frame
- b) Cables
- c) Connections
- d) Purell
- e) Fabric

Cold Galvanization is usually just as effective as Hot Dip Galvanization.

a) True

b) False

Fabric tears can be ignored as long as they don't allow excessive snow/rain from entering the structure.

- a) True
- b) False

Which of the following corrosion systems is <u>not</u> applicable to a salt structures?

- a) Hot Dip Galvanization
- b) Electronic Rust Prevention System
- c) Active Cathodic Protection
- d) Cold Galvanization

Precast wall units can be placed on grade without backing material.

- a) True
- b) False

Which of the following members can be in tension depending on loading?

- a) Top Chord
- b) Bottom Chord
- c) Cables
- d) Fabric
- e) All of the above

Which of the following is not usually a concern for the integrity of the structure?

- a) Impact damage
- b) Fabric tearing
- c) Cable deterioration
- d) Snow accumulation

Hand computations are usually the most efficient way to check the adequacy of the design.

- a) True
- b) False

Which of the following conditions is evaluated during design?

- a) Balanced snow load
- b) Imbalanced snow load
- c) Wind direction
- d) Wind zone
- e) All of the above

Salt Overloading:

- a) Can lead to corrosion
- b) Can lead to fabric failure
- c) OK on fries
- d) All of the above

QUESTIONS

CONTACTS:

BARTON BREISCH STRUCTURAL ENGINEER (845) 353-6400 JIM BRIDGES, PE CAPITAL DISTRICT REGION (518) 992-4830

BBREISCH@MGMCLAREN.COMJBRIDGES@MGMCLAREN.COM